Telegram Group & Telegram Channel
Efficiently Modeling Long Sequences with Structured State Spaces [2021] - как дотер стал нейросетью

Для тех, кто не знает - я не особый любитель длинных математических статей. В целом, я не умею с адекватной скоростью читать и воспринимать много линала. Наверняка в телеграме существует большое количество умных постов про S4 с кратким пересказом его математики, и если вы из тех, кто способен такое воспринимать, поздравляю - данный пост не для вас.

Я постарался, вооружившись гайдом, уловить основной смысл данной архитектуры, где она находится по отношению с известными широким кругам. Итак, поехали.

Представим, что существует "ячейка памяти" - хранилище-вектор, который обновляется с учётом предыдущего состояния ячейки, последнего входа и каких-то обучаемых параметров. Помимо памяти есть функция выхода, которая берёт новое состояние памяти, последний вход и выдаёт выход наружу.

Мы уже знаем реализации подобных абстракций. Простейшая RNN, GRU/LSTM - все мы их любим, но у них есть жирная проблема - их нужно считать шаг за шагом, а значит, нельзя применить много компьюта и обработать кучу информации за раз, так, как это умеют трансформеры, но сами трансформеры фэйлятся на огромных контекстах.

Итак, помимо RNN и GRU существует State Space Model - ещё один формат ячейки памяти (в его основе всего лишь парочка матричных умножений), но у него есть крутая особенность. Вычисление рода "прогнать SSM на последовательности", оказывается, можно переформулировать в другую функцию - свёртку, для которой можно предпосчитать веса. При добавлении ещё одного фокуса (FFT) эту свёртку можно считать быстрее, чем втупую, что в итоге позволяет по сути быстро применять SSM на всей последовательности.

Далее, у SSM есть 2 проблемы - они херово работают, и хвалёное "быстро посчитать" на самом деле не такое уж и быстрое.

Чтобы решить первое, был придуман магический гиппопотам - инициализация одной из матриц внутри SSM таким образом, чтобы она была изначально ближе к пространству чего-то разумного.

Вкратце, вторая проблема заключается в том, что для подсчёта весов свёртки нужно умножать много матриц, а нам вообще-то лень - бумага нынче дорогая. Для этого придумывают магический костыль - Diagonal Plus Low-Rank. Я не стал разбираться в деталях, если вам интересно, отсылаю к разбору, но одну из матриц просто (нихера не просто в реальности) представляют не как обучаемую матрицу весов, а как результат операций над другими обучаемыми сущностями.

В результате, объединив описанные хаки, и получается S4 - хитрая и быстрая вариация "RNN"-ки, которую успешно применяют на сверхдлинных последовательностях.

Замечу, что это не первая статья, которую я обозреваю, в которой засчёт убирания нелинейностей удаётся всё очень сильно ускорить и упростить - напомню про RetNet. Нет никаких гарантий, что "мощность" архитектуры достигается как раз засчёт этих нелинейностей.

Кроме того, скажу честно - я банально не верю, что прорывные архитектуры будут основаны на какой-то сложной математике. Через пару лет окажется, что есть какая-нибудь суперпростая штука, которая делает всё то же самое даже лучше. Это не исключает, что математика будет вдохновлять на прогресс и в какой-то момент натолкнёт ресёрчеров на нечто крутое, но само это крутое будет очень простым.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/223
Create:
Last Update:

Efficiently Modeling Long Sequences with Structured State Spaces [2021] - как дотер стал нейросетью

Для тех, кто не знает - я не особый любитель длинных математических статей. В целом, я не умею с адекватной скоростью читать и воспринимать много линала. Наверняка в телеграме существует большое количество умных постов про S4 с кратким пересказом его математики, и если вы из тех, кто способен такое воспринимать, поздравляю - данный пост не для вас.

Я постарался, вооружившись гайдом, уловить основной смысл данной архитектуры, где она находится по отношению с известными широким кругам. Итак, поехали.

Представим, что существует "ячейка памяти" - хранилище-вектор, который обновляется с учётом предыдущего состояния ячейки, последнего входа и каких-то обучаемых параметров. Помимо памяти есть функция выхода, которая берёт новое состояние памяти, последний вход и выдаёт выход наружу.

Мы уже знаем реализации подобных абстракций. Простейшая RNN, GRU/LSTM - все мы их любим, но у них есть жирная проблема - их нужно считать шаг за шагом, а значит, нельзя применить много компьюта и обработать кучу информации за раз, так, как это умеют трансформеры, но сами трансформеры фэйлятся на огромных контекстах.

Итак, помимо RNN и GRU существует State Space Model - ещё один формат ячейки памяти (в его основе всего лишь парочка матричных умножений), но у него есть крутая особенность. Вычисление рода "прогнать SSM на последовательности", оказывается, можно переформулировать в другую функцию - свёртку, для которой можно предпосчитать веса. При добавлении ещё одного фокуса (FFT) эту свёртку можно считать быстрее, чем втупую, что в итоге позволяет по сути быстро применять SSM на всей последовательности.

Далее, у SSM есть 2 проблемы - они херово работают, и хвалёное "быстро посчитать" на самом деле не такое уж и быстрое.

Чтобы решить первое, был придуман магический гиппопотам - инициализация одной из матриц внутри SSM таким образом, чтобы она была изначально ближе к пространству чего-то разумного.

Вкратце, вторая проблема заключается в том, что для подсчёта весов свёртки нужно умножать много матриц, а нам вообще-то лень - бумага нынче дорогая. Для этого придумывают магический костыль - Diagonal Plus Low-Rank. Я не стал разбираться в деталях, если вам интересно, отсылаю к разбору, но одну из матриц просто (нихера не просто в реальности) представляют не как обучаемую матрицу весов, а как результат операций над другими обучаемыми сущностями.

В результате, объединив описанные хаки, и получается S4 - хитрая и быстрая вариация "RNN"-ки, которую успешно применяют на сверхдлинных последовательностях.

Замечу, что это не первая статья, которую я обозреваю, в которой засчёт убирания нелинейностей удаётся всё очень сильно ускорить и упростить - напомню про RetNet. Нет никаких гарантий, что "мощность" архитектуры достигается как раз засчёт этих нелинейностей.

Кроме того, скажу честно - я банально не верю, что прорывные архитектуры будут основаны на какой-то сложной математике. Через пару лет окажется, что есть какая-нибудь суперпростая штука, которая делает всё то же самое даже лучше. Это не исключает, что математика будет вдохновлять на прогресс и в какой-то момент натолкнёт ресёрчеров на нечто крутое, но само это крутое будет очень простым.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/223

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA